Chemistry Standard level Paper 1 Wednesday 9 November 2022 (morning) 45 minutes ## Instructions to candidates - Do not open this examination paper until instructed to do so. - Answer all the questions. - For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided. - The periodic table is provided for reference on page 2 of this examination paper. - The maximum mark for this examination paper is [30 marks]. | 4. | |----| | O) | | | | Ω | | Ta | | _ | | ပ | | | | 7 | | 0 | | .≃ | | a | | Δ. | | Φ | | ᅩ | | 18 | 2
He
4.00 | 10
Ne
20.18 | 18
Ar
39.95 | 36
Kr
83.90 | 54
Xe
131.29 | 86
Rn
(222) | 118
Uuo
(294) | |--------------|------------------------|--|--------------------------|----------------------------|----------------------------|-----------------------------|----------------------------| | 17 | | 9
F
19.00 | 17
CI
35.45 | 35
Br
79.90 | 53
I
126.90 | 85
At
(210) | 117
Uus
(294) | | 16 | | 8
O
16.00 | 16
S
32.07 | 34
Se
78.96 | 52
Te
127.60 | 84
Po
(209) | 116
Uuh
(293) | | 15 | | 7
N
14.01 | 15
P
30.97 | 33
As
74.92 | 51
Sb
121.76 | 83
Bi
208.98 | 115
Uup
(288) | | 14 | | 6
C
12.01 | 14
Si
28.09 | 32
Ge
72.63 | 50
Sn
118.71 | 82
Pb
207.2 | 114
Uug
(289) | | <u>6</u> | | 5
B
10.81 | 13
Al
26.98 | 31
Ga
69.72 | 49
In
114.82 | 81
TI
204.38 | 113
Unt
(286) | | 12 | | | | 30
Zn
65.38 | 48
Cd
112.41 | 80
Hg
200.59 | 112
Cn
(285) | | , | | | | 29
Cu
63.55 | .47
Ag
107.87 | 79
Au
196.97 | 111
Rg
(281) | | 10 | | | | 28
Ni
58.69 | 46
Pd
106.42 | 78
Pt
195.08 | 110
Ds (281) | | 6 | | S | | 27
Co
58.93 | 45
Rh
102.91 | 77
Ir
192.22 | 109
Mt
(278) | | 80 | | mic number
Element
/e atomic mas | į. | 26
Fe
55.85 | 44
Ru
101.07 | 76
0s
190.23 | 108
Hs
(269) | | 7 | | Atomic number
Element
Relative atomic mass | | 25
Mn
54.94 | 43
Tc
(98) | 75
Re
186.21 | 107
Bh
(270) | | 9 | | Lf. | | 24
Cr
52.00 | 42
Mo
95.96 | 74
W
183.84 | 106
Sg
(269) | | ĸ | | | | 23
V
50.94 | 41
Nb
92.91 | 73
Ta
180.95 | 105
Db
(268) | | 4 | | | | 22
Ti
47.87 | 40
Zr
91.22 | 72
Hf
178.49 | 104
Rf
(267) | | က | | | | 21 .
Sc
44.96 | 39
Y
88.91 | 57 †
La
138.91 | 89 ‡ Ac (227) | | 7 | | 4 Be 9.01 | 12
Mg
24.31 | 20
Ca
40.08 | 38
Sr
87.62 | 56
Ba
137.33 | 88
Ra
(226) | | - | - ≖ to: | 3
Li
6.94 | 11
Na
22.99 | 19
X
39.10 | 37
Rb
85.47 | 55
Cs
132.91 | 87
Fr
(223) | | | V | 24 | ю
 | 4 | 2 | 9 | | | 71 | 103 | |--------------|-----------| | Lu | Lr | | 174.9 | (262) | | 70 | 102 | | Yb | No | | 173.05 | (259) | | 69 | 101 | | Tm | Md | | 168.93 | (258) | | 68 | 100 | | Er | Fm | | 167.26 | (257) | | 67 | 99 | | Ho | Es | | 164.93 | (252) | | 66 | 98 | | Dy | Cf | | 162.50 | (251) | | 65 | 97 | | Tb | Bk | | 158.93 | (247) | | 64 | 96 | | Gd | Cm | | 157.25 | (247) | | 63 | 95 | | Eu | Am | | 151.96 | (243) | | 62 | 94 | | Sm | Pu | | 150.36 | (244) | | 61 | 93 | | Pm | Np | | (145) | (237) | | 60 | 92 | | Nd | U | | 144.24 | 238.03 | | 59 | 91 | | Pr | Pa | | 140.91 | 231.04 | | 58 | 90 | | Ce | Th | | 140.12 | 232.04 | | - | ++ | 1. How many oxygen atoms are present in 0.0500 mol Ba(OH)₂•8H₂O? $$N_A = 6.02 \times 10^{23}$$ - A. 3.01×10^{23} - B. 6.02×10^{23} - C. 3.01×10^{24} - D. 6.02×10^{24} - 2. What is the change of state for a gas to a solid? - A. Condensation - B. Deposition - C. Freezing - D. Sublimation - 3. How many moles of carbon dioxide are produced by the complete combustion of 7.0 g of ethene, $C_2H_4(g)$? $$M_{\rm r} = 28$$ - A. 0.25 - B. 0.5 - C. 0.75 - D. 1.0 - **4.** Which is a possible empirical formula for a substance with $M_r = 42$? - A. CH - B. CH₂ - C. C₃H₆ - D. C_3H_8 | 5. | Whic | ich quantities are different between two species represented by the notation $^{128}_{52}$ Te and $^{128}_{53}$ I $^-$? | | | |----|--|--|--|--| | | A. | The number of protons only | | | | | B. | The number of protons and electrons only | | | | | C. | The number of protons and neutrons only | | | | | D. | The number of protons, neutrons and electrons | | | | 6. | What is the relative atomic mass of a sample of chlorine containing 70% of the ³⁵ Cl isotope and 30% of the ³⁷ Cl isotope? | | | | | | A. | 35.4 | | | | | B. | 35.5 | | | | | C. | 35.6 | | | | | D. | 35.7 | | | | 7. | Whic | th elements are considered to be metalloids? | | | | | | I. Gallium | | | | | | II. Germanium | | | | | | III. Arsenic | | | | | A. | I and II only | | | | | B. | I and III only | | | | | C. | II and III only | | | | | D. | I, II and III | | | | 8. | Which property of elements increases down a group but decreases across a period? | | | | | | A. | Atomic radius | | | | | B. | Electronegativity | | | | | C. | Ionic radius | | | | | D. | Ionization energy | | | | | | | | | - 9. Which molecule can be represented by resonance structures? - A. H₂S - B. HNO₃ - C. H₂O₂ - D. HClO - 10. Which molecule is polar? - A. BeH₂ - B. AlH₃ - C. PH₃ - D. SiH₄ - 11. Which structure of CF_2Cl_2 is shown with correct bond and molecular dipoles? B. $$\delta^+$$ δ^+ δ^+ δ^+ δ^+ C. $$F_{\delta} = \begin{cases} \delta \cdot Cl \delta \cdot \\ \delta \cdot F \end{cases}$$ - Alloying a metal with a metal of smaller atomic radius can disrupt the lattice and make it more 12. difficult for atoms to slide over each other. Which property will increase as a result? - A. Electrical conductivity - B. Ductility - C. Malleability - D. Strength - 13. Chlorofluorocarbons (CFCs) contain bonds of the following lengths: $$C-C = 1.54 \times 10^{-10} \text{ m}$$ $$C-F = 1.38 \times 10^{-10} \text{ m}$$ $$C-Cl = 1.77 \times 10^{-10} \text{ m}$$ What is the order of increasing bond strength in the CFC molecule? A. $$C-C < C-F < C-Cl$$ B. $$C-C < C-Cl < C-F$$ $$C.$$ $C-Cl < C-C < C-F$ D. $$C-F < C-C < C-Cl$$ 14. What is the value for enthalpy of formation of methane from the given enthalpies of combustion? $$C(s) + O_2(g) \rightarrow CO_2(g)$$ $$\Delta H = -394 \,\mathrm{kJ \ mol^{-1}}$$ $$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$ $$\Delta H = -286 \,\mathrm{kJ} \;\mathrm{mol}^{-1}$$ $$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$ $\Delta H = -891 \text{ kJ mol}^{-1}$ $$\Delta H = -891 \, \text{k.l mol}^{-1}$$ A. $$(-394 - 286 - 891)$$ kJ mol⁻¹ B. $$(-394 - (2 \times 286) - 891) \text{ kJ mol}^{-1}$$ C. $$(-394 - 286 + 891) \text{ kJ mol}^{-1}$$ D. $$(-394 - (2 \times 286) + 891)$$ kJ mol⁻¹ - **15.** Which statement best describes heat? - A. A quantity of potential energy of particles - B. A quantity of average kinetic energy of particles - C. A quantity of energy transferred between particles - D. A quantity of the total energy held by particles - 16. What initial rate of reaction can be determined from the graph? - A. $0.1 \, \text{mol dm}^{-3} \, \text{s}^{-1}$ - B. $0.2 \, \text{mol dm}^{-3} \, \text{s}^{-1}$ - C. $1.0 \,\text{mol dm}^{-3} \,\text{s}^{-1}$ - D. $1.6 \,\mathrm{mol}\,\mathrm{dm}^{-3}\,\mathrm{s}^{-1}$ 17. Which changes would increase the rate of an exothermic reaction? | | Temperature | Particle size | |----|-------------|---------------| | A. | Increase | Decrease | | B. | Increase | Increase | | C. | Decrease | Increase | | D. | Decrease | Decrease | - **18.** The exothermic reaction $I_2(g) + 3Cl_2(g) \rightleftharpoons 2ICl_3(g)$ is at equilibrium in a fixed volume. What is correct about the reaction quotient, Q, and shift in position of equilibrium the instant temperature is raised? - A. Q > K, equilibrium shifts right towards products. - B. Q > K, equilibrium shifts left towards reactants. - C. Q < K, equilibrium shifts right towards products. - D. Q < K, equilibrium shifts left towards reactants. - **19.** Equal volumes of 0.10 mol dm⁻³ weak acid and strong acid are titrated with 0.10 mol dm⁻³ NaOH solution. Which of these is the same for the two acids? - A. Initial pH - B. Heat evolved in the neutralization - C. Volume of NaOH for complete neutralization - D. Initial electrical conductivity - 20. Which species has the weakest conjugate base? - A. HCl - B. NH₄[†] - C. HCO₃ - D. H₂O 21. What occurs during the operation of a voltaic cell based on the given reaction? $$2Cr(s) + 3Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Fe(s)$$ | | External circuit | lon movement in solution | |----|---|---| | A. | Electrons move from Cr to Fe | Fe ²⁺ (aq) move away from Fe (s) | | B. | Electrons move from Cr to Fe | Fe ²⁺ (aq) move toward Fe (s) | | C. | Electrons move from Fe to Cr | | | D. | D. Electrons move from Fe to Cr Cr³+ (aq) move toward Cr(s) | | **22.** Which substance is the reducing agent in the given reaction? $$H^{+}(aq) + 2H_{2}O(l) + 2MnO_{4}^{-}(aq) + 5SO_{2}(g) \rightarrow 2Mn^{2+}(aq) + 5HSO_{4}^{-}(aq)$$ - A. H⁺ - B. H₂O - C. MnO₄ - D. SO₂ 23. Which combination is correct regarding the anode and electron flow in an electrolytic cell? | | Polarity of anode | Movement of electrons in external circuit | |----|--------------------|---| | A. | Positive electrode | Anode to cathode | | B. | Positive electrode | Cathode to anode | | C. | Negative electrode | Anode to cathode | | D. | Negative electrode | Cathode to anode | **24.** Which are isomers of C_5H_{12} ? - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - **25.** Which homologous series has the general formula $C_nH_{2n}O$ (n > 2)? - A. Alcohols - B. Carboxylic acids - C. Ethers - D. Ketones - 26. Which conditions best favour oxidation of primary alcohols directly to carboxylic acids? - A. Excess acidified potassium dichromate (VI) and distillation - B. Excess acidified potassium dichromate (VI) and reflux - C. Few drops of acidified potassium dichromate (VI) and distillation - D. Few drops of acidified potassium dichromate (VI) and reflux - 27. What are nucleophiles most likely to react with? - A. Alkenes - B. Benzene - C. Alkanes - D. Halogenoalkanes 28. What combination is the most effective for reducing random and systematic errors? | | Reduce random error | Reduce systematic error | |--|--|-------------------------| | A. Repeat trials Repeat trials | | Repeat trials | | B. | Recalibrate equipment | Recalibrate equipment | | C. | C. Repeat trials Recalibrate equipment | | | D. Recalibrate equipment Repeat trials | | Repeat trials | - **29.** A well tested scientific idea which has been used to make predictions cannot explain a particular event. Which statement describes the scientific approach to this dilemma? - A. Hypothesis should be discarded. - B. Hypothesis should be revised. - C. Theory should be discarded. - D. Theory should be revised. - **30.** What information about 2-hydroxybutanoic acid can be inferred through mass spectrometry, MS, infrared spectroscopy, IR, and proton nuclear magnetic resonance spectroscopy, ¹H NMR? | | MS | IR | ¹H NMR | |----|---|---|---| | A. | $M = 104 \mathrm{g \ mol^{-1}}.$ | Compound contains carboxyl and hydroxyl groups. | The hydroxyl group is on the 2nd, rather than 4th carbon. | | B. | $M = 104 \mathrm{g \ mol^{-1}}.$ | The hydroxyl group is on the 2nd, rather than 4th carbon. | Compound contains carboxyl and hydroxyl groups. | | C. | Compound contains carboxyl and hydroxyl groups. | $M = 104 \mathrm{g \ mol^{-1}}.$ | The hydroxyl group is on the 2nd, rather than 4th carbon. | | D. | Compound contains carboxyl and hydroxyl groups. | The hydroxyl group is on the 2nd, rather than 4th carbon. | $M = 104 \mathrm{g \ mol^{-1}}.$ |